APPLICATION Since it is known that distance times force will give us the torque of a given application it is a simple matter to turn the formula around and build a tool for a known torque requirement. Using the same example and knowing only the torque requirements of a tool: 60 inch-pounds = L x D |
|||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||
The tool can be built to fit the application whether a long or short lever is required, a curved lever to fit a hard-to-reach fastener, a self-contained tool or one that will take many adapters or accessories. | |||||||||||||||||||||||||||
TORQUE FORMULAE | |||||||||||||||||||||||||||
When adapters are used that rotate about a center not located at the center of the tang of the torque wrench, it is necessary to compensate for the additional length. An extension will always increase the capacity of the wrench. |
|||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||
AMOUNT OF TORQUE REQUIRED |
|||||||||||||||||||||||||||
A torque wrench is used in conjunction with a threaded fastener for the single purpose of controlling the clamping ability of the fastener. The stresses induced in the body of the bolt or screw by tightening provide the force which does the clamping. Since the torque applied to the head of the fastener is directly proportional, or nearly so, to the load applied, it is possible to measure bolt stress by means of a torque wrench. The first requirement in determining the amount of torque to apply is a knowledge of the desired bolt stress. It this stress is not dictated by the function of the assembly it is common practice to base the limit on the yield strength of the bolt material. Theoretically, screws and bolts may be tightened to the yield point. However, in order to avoid fastener failure during the assembly process it is recommended that the induced stress not be allowed to exceed 80% of the yield strength. In the original design of a fastener which will be subject to external loading, whether static or dynamic, it will be necessary to establish bolt size and allowable stress in accordance with current engineering practice. The mathematical relationship between torque applied and the resulting tension force in the bolt has been determined to be as follows: |
|||||||||||||||||||||||||||
|